
S. S Jain Subodh P.G. (Autonomous) College
SUBJECT - Artificial Intelligence and Expert Systems

TITLE - Search Techniques (Part-2)

Best-First Search

• Combines the advantages of both Breadth-First search and
Depth-First search Techniques.

– DFS: follows a single path, don’t need to generate all
competing paths.

– BFS: doesn’t get Đaught in loops or dead-end-paths.

• Best First Search: Follow a single path at a time, but switch
paths whenever some competing path looks more
promising then the current one does.

• While goal not reached do the following:-

1. Generate all potential successor states and add to a list
of states.

2. Pick the best state in the list and go to it.

Presented By –

SANGEETA VAIBHAV MEENA

Best-First Search Example

A

D C B

F E H G

J I

5

6 6 5

2 1

A

D C B

F E H G
5

6 6 5 4

A

D C B

F E
5

6

3

4

A

D C B

5 3 1

A

Best-First Search is very similar to the Steepest-Ascent Hill

Climbing with two exceptions:-

• In Hill Climbing one move is selected and all others are

rejected and never to be reconsidered. While in Best-First

search, one move is selected and others are kept around

so they can be revisited later if the selected path becomes

less promising.

• The best available state is selected in Best-First Search,

even if that state has a value that is lower than the value

of the state that was just explored. This is in contrast with

Hill Climbing which will stop if there are no successor state

with better values than the current state.

Best-First Search
• OPEN: nodes that have been generated and have had the

heuristic function applied to them but have not yet been

examined(i.e. had their successors generated).

 Open is actually a priority queue in which the elements

with the highest priority are those with the most

promising value of the heuristic function.

• CLOSED: nodes that have already been examined. We

need to keep those nodes in memory.

 Whenever a new node is generated, check whether it has

been generated before.

Best-First Search Algorithm

1. OPEN = {initial state}.

2. Loop until a goal is found or there are no nodes left in OPEN:

 a) Pick the best node in OPEN

 b) Generate its successors

 c) For each successor:

 (i) If it has not been generated before, evaluate it, add it

 to OPEN and record its parent.

 (ii) If it has been generated before, change the parent if

 this new path is better than the previous one. In that

 case, update the cost of getting to this node and to any

 successors that this node may already have.

A* Search

• The most widely- Known form of Best-First search is called
A* Search.

• It evaluates nodes by combining g(n) and h’;nͿ.
• g(n) :- cost of the cheapest path from the initial state to

node n.
• h’;n) :- estimated cost of the cheapest path from node n

to a goal state.
f’;nͿ = g(n) + h’;n)

• A* minimizes the total path cost.

• Under the right conditions A* provides the cheapest cost
solution in the optimal time!

A* Algorithm
1. Create a priority queue of search nodes (initially

 the start state). Priority is determined by the

 function f)

2. While queue not empty and goal not found:

 a) Get best state x from the queue.

 b) If x is not goal state:

 (i) Generate all possible children of x and save
 path information with each node.

 (ii) Apply f to each new node and add to queue.

 (iii)Remove duplicates from queue (using f to

 pick the best).

Problem Reduction Search

• Planning how best to solve a problem that can be
recursively decomposed into sub problems in
multiple ways.

• In OR graphs, arcs indicate the number of alternative
ways.

• The AND-OR graph is useful for representing the
solution of complicated problems.

• AND arc may point to any number of successors, all
of which must be solved.

• In AND-OR graph, we need algorithm similar to Best-
First Search but with the ability to handle the AND
arcs appropriately.

Problem Reduction

Goal: Acquire Cellular Phone

AND-OR Graphs

Goal: Get a gift Goal: Earn some money Goal: Buy Phone

Problem Reduction: AO*

A

D C B

4 3 5

A

5
6

F E

4 4

A

D C B

4 3

10

9

9

9

F E

4 4

A

D C B

4

6 10

11

12

H G

7 5

AO* Search Algorithm
1. Place the start node on open.

2. Using the search tree, compute the most promising solution

 tree TP .

3. Select node n that is both on open and a part of tp, remove n

 from open and place it on closed.

4. If n is a goal node, label n as solved. If the start node is solved,

 exit with success where tp is the solution tree, remove all nodes

 from open with a solved ancestor.

5. If n is not solvable node, label n as unsolvable. If the start node

 is labeled as unsolvable, exit with failure. Remove all nodes from

 open ,with unsolvable ancestors.

6. Otherwise, expand node n generating all of its successor

 compute the cost of for each newly generated node and place

 all such nodes on open.

7. Go back to step(2)

Constraint Satisfaction

• Many AI problems can be viewed as problems of

constraint satisfaction.

• Cryptarithmetic puzzle Example:

 SEND

 + MORE

 MONEY

• As compared with a straightforward search procedure,

viewing a problem as one of constraint satisfaction can

reduce substantially the amount of search.

Constraint Satisfaction

• Operates in a space of constraint sets.

• Initial state contains the original constraints given in the
problem.

• A goal state is any state that has ďeen Đonstrained ͞enough .͟

Two-step process:

1. Constraints are discovered and propagated as far as possible.

2. If there is still not a solution, then search begins, adding new
constraints.

M = 1

S = 8 or 9

O = 0

N = E + 1

C2 = 1

N + R > 8

E  9

N = 3

R = 8 or 9

2 + D = Y or 2 + D = 10 + Y

2 + D = Y

N + R = 10 + E

R = 9

S =8

2 + D = 10 + Y

D = 8 + Y

D = 8 or 9

Y = 0 Y = 1

E = 2

C1 = 0 C1 = 1

D = 8 D = 9

Initial state:

• No two letters have

 the same value.

• The sum of the digits

 must be as shown.

 SEND

 MORE

 MONEY



Constraint Satisfaction

Two kinds of rules:

1. Rules that define valid constraint propagation.

2. Rules that suggest guesses when necessary.

Backtracking

• Backtracking is a general algorithm for finding all (or

some) solutions to some computational problems,

notably constraint satisfaction problems, that

incrementally builds candidates to the solutions, and

abandons each partial candidate c ("backtracks") as soon

as it determines that c cannot possibly be completed to a

valid solution

• Backtracking is similar to DFS but uses less space, keeping

just one current solution state and updating it.

• Backtracking is most efficient technique for problems, like

n-queen problem.

Thank You

