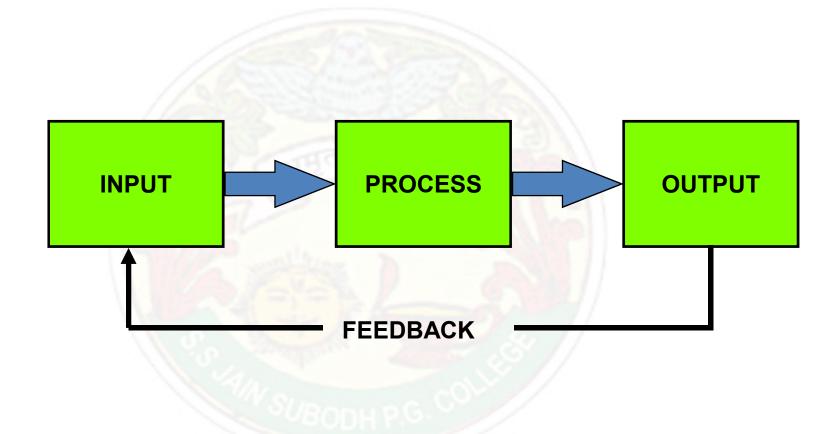


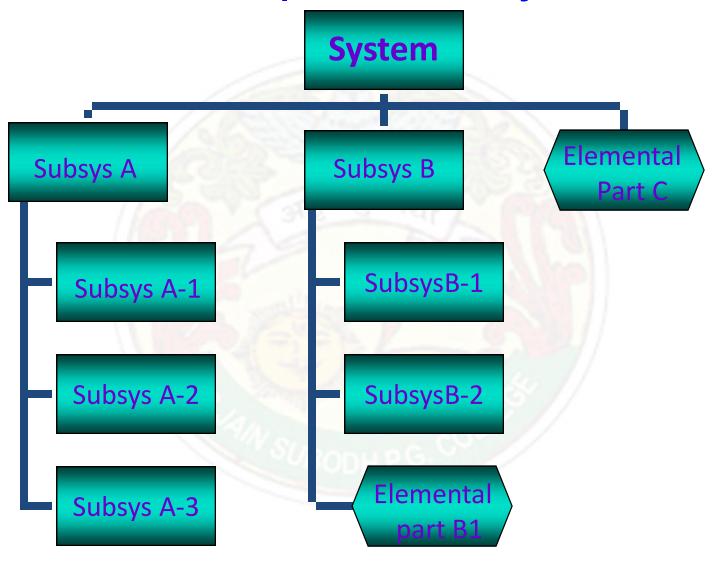
SUBJECT - SYSTEM ANALYSIS AND DESIGN TITLE — SYSTEM CONCEPT

BY: Dr. VAIBHAV



What is a System?

- A collection of parts that work together to achieve a goal/task
 - Examples
 - Solar system
 - Digestive systems
 - Public transport system
 - Central heating system
 - Computer system
 - Information system
- A set of objects and relationships among the objects viewed as a whole and designed to achieve a purpose


System Elements

Systems

Can Be Composed of Subsystems

What is subsystem?

- A subsystem is simply a system within a system.
 - Automobile is a system composed of subsystems:
 - Engine system
 - Body system
 - Frame system
 - Each of these subsystem is composed of sub-sub --systems.
 - Engine system: carburetor system, generator system, fuel system, and so son

Bad Systems

- Fail to meet requirements
- Poor performance
- Poor reliability
- Lack of usability
- Example difficulties:
 - Not to schedule
 - Not to budget
 - Runaway = 100% over budget or schedule
- Some problems are simply "wicked" problems

Reasons for Failure

- Complexity
 - Shifting requirements
 - Bad estimation
 - Bad management
 - New technology
- Must tackle complexity by, for example:
 - Structure partitioning of problem
 - Organized interaction of parts
 - Ensure you achieve the task
- Systems are subject to the need for continuing change

Important System Concepts

- Decomposition
 - The process of breaking down a system into smaller components
 - Allows the systems analyst to:
 - Break a system into small, manageable subsystems
 - Focus on one area at a time
 - Concentrate on component pertinent to one group of users
 - Build different components at independent times

Important System Concepts

Modularity

- Process of dividing a system into modules of a relatively uniform size
- Modules simplify system design

Coupling

Subsystems that are dependent upon each other are coupled

Cohesion

Extent to which a subsystem performs a single function

Computer-based Information Systems (CBIS) vs Manual Systems

CBIS

 Information system that rely on computer hardware and software for processing and disseminating information

Manual systems

Use paper + pencil technology

CBIS Components

A Computer-based Information System = Hardware
+ Software + People + Procedures + Information

Data and Information

- Data are raw facts about the organization and its business transactions. Most data items have little meaning and use by themselves.
- Alternative definition:
 - Data are a collection of items such as words, numbers, images, and sounds that are not organized and have little meaning individually
 - Data are raw facts about people, objects, and events in an organization
- information: Data that is organized

Data flow and processing logic

Data flow:

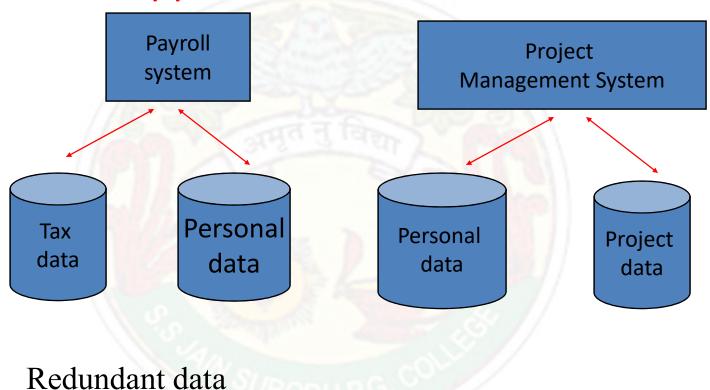
 Data in motion, moving from one place in a system to another

Processing logic:

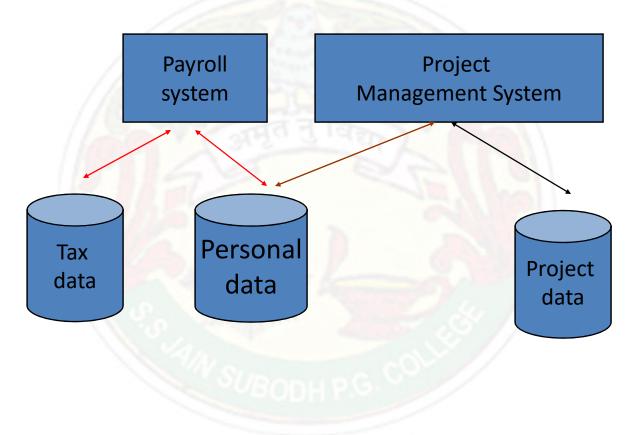
 The steps by which data are transformed or moved and a description of the events that trigger these steps

Databases

- A shared collection of logically related data designed to meet the information needs of multiple users in organization.
- Database Files Records -- Fields


Levels of data managements

Traditional vs database approach


Traditional approach

Traditional vs database approach

Database approach

