
 Object Oriented Programming Concept

S. S Jain Subodh P.G. (Autonomous) College
SUBJECT -

 TITLE -
POLYMORPHISM

Created By:
Shalu J. Rajawat

S. S Jain Subodh P.G. (Autonomous) College

Signatures

• In any programming language, a signature is
what distinguishes one function or method
from another

• In c++, two methods have to differ in their
names or in the number or types of their
parameters
– foo(int i) and foo(int i, int j) are different

– foo(int i) and foo(int k) are the same

– foo(int i, double d) and foo(double d, int i) are
different

• In C++, the signature also includes the return
type.

2

S. S Jain Subodh P.G. (Autonomous) College

Polymorphism
• Polymorphism means many (poly) shapes

(morph)
• The word polymorphism means having

many forms. Typically, polymorphism
occurs when there is a hierarchy of
classes and they are related by
Inheritance.

• There are three types of polymophism
 1. Function overloading
 2. Operator Overloading
 3. Virtual function

3

S. S Jain Subodh P.G. (Autonomous) College

FUNCTION Overloading

We have multiple definitions for the
same function name in the same scope.
The definition of the function must
differ from each other by the types
and/or the number arguments in the
argument list. We can not overload
function declaration that differ only by
return type.

4

S. S Jain Subodh P.G. (Autonomous) College

 PROGRAM -1
#include <iostream.h>
class printData {
 public:
 void print(int i) {
 cout << "Printing int: " << i << endl;
 }
 void print(double f) {
 cout << "Printing float: " << f << endl;

 }
 void print(char* c) {
 cout << "Printing character: " << c << endl;
 }
};
int main(void) {
 printData pd;
 pd.print(5); // Call print to print integer
 pd.print(500.263); // Call print to print float
 pd.print("Hello C++"); // Call print to print character
 return 0;
}

S. S Jain Subodh P.G. (Autonomous) College

6

OUTPUT:
Printing int: 5
Printing float: 500.263
Printing character: Hello C++

S. S Jain Subodh P.G. (Autonomous) College

7

OPERATOR OVERLOADING

We can redefine or overload most of the built-in operators available in C++.

Thus a programmer can use operators with user-defined types as well.

Overloaded operators are functions with special names the keyword operator

followed by the symbol for the operator being defined. Like any other function,

an overloaded operator has a return type and a parameter list.

Box operator+(const Box&);
declares the addition operator that can be used to add two Box objects and

returns final Box object. Most overloaded operators may be defined as ordinary

non-member functions or as class member functions. In case we define above

function as non-member function of a class then we would have to pass two
arguments for each operand as follows:

Box operator+(const Box&, const Box&);
Following is the example to show the concept of operator over loading using a

member function. Here an object is passed as an argument whose properties will

be accessed using this object, the object which will call this operator can be

accessed using this operator as explained below:

S. S Jain Subodh P.G. (Autonomous) College

#include <iostream.h>
Box {
 public:
 double getVolume(void) {
 return length * breadth * height;
 }
 void setLength(double len) {
 length = len;
 }
 void setBreadth(double bre) {
 breadth = bre;
 }
 void setHeight(double hei) {
 height = hei;
 }
 // Overload + operator to add two Box objects.
 Box operator+(const Box& b) {
 Box box;
 box.length = this->length + b.length;
 box.breadth = this->breadth + b.breadth;
 box.height = this->height + b.height;
 return box;
 }

S. S Jain Subodh P.G. (Autonomous) College

 private:
 double length; // Length of a box
 double breadth; // Breadth of a box
 double height; // Height of a box
};

 // Main function for the program
int main() {
 Box Box1; // Declare Box1 of type Box
 Box Box2; // Declare Box2 of type Box
 Box Box3; // Declare Box3 of type Box
 double volume = 0.0; // Store the volume of a box here
 // box 1 specification
 Box1.setLength(6.0);
 Box1.setBreadth(7.0);
 Box1.setHeight(5.0);
 // box 2 specification
 Box2.setLength(12.0);
 Box2.setBreadth(13.0);
 Box2.setHeight(10.0);

S. S Jain Subodh P.G. (Autonomous) College

 // volume of box 1
 volume = Box1.getVolume();
 cout << "Volume of Box1 : " << volume <<endl;
 // volume of box 2
 volume = Box2.getVolume();
 cout << "Volume of Box2 : " << volume <<endl;
 // Add two object as follows:
 Box3 = Box1 + Box2;
 // volume of box 3
 volume = Box3.getVolume();
 cout << "Volume of Box3 : " << volume <<endl;
 return 0;
 }

S. S Jain Subodh P.G. (Autonomous) College

11

OUTPUT:

Volume of Box1 : 210
Volume of Box2 : 1560
Volume of Box3 : 5400

S. S Jain Subodh P.G. (Autonomous) College

12

Overloadable / Non-overloadable Operators:

Following is the list of operators which can be overloaded:

+ - * / % ^

& | ~ ! , =

< > <= >= ++ --

<< >> == != && ||

+= -= /= %= ^= &=

|= *= <<= >>= [] ()

-> ->* new new [] delete delete []

Following is the list of operators, which can not be overloaded:

:: .* . ?:

S. S Jain Subodh P.G. (Autonomous) College

13

Virtual Function

1. A virtual function is a member function that is declared within a
base class and redefined by a derived class. To create virtual
function, precede the function’s declaration in the base class with the
keyword virtual. When a class containing virtual function is
inherited, the derived class redefines the virtual function to suit its
own needs.

2. Base class pointer can point to derived class object. In this case,
using base class pointer if we call some function which is in both
classes, then base class function is invoked. But if we want to invoke
derived class function using base class pointer, it can be achieved by
defining the function as virtual in base class, this is how virtual
functions support runtime polymorphism.

Difference between virtual function and non virtual function through
these program:

S. S Jain Subodh P.G. (Autonomous) College

 PROGRAM-1
#include <iostream.h>
class Shape {
 protected:
 int width, height;
 public:
 Shape(int a = 0, int b = 0) {
 width = a;
 height = b;
 }
 int area() {
 cout << "Parent class area :" <<endl;
 return 0;
 }
};
class Rectangle: public Shape {
 public:
 Rectangle(int a = 0, int b = 0):Shape(a, b) { }
 int area () {
 cout << "Rectangle class area :" <<endl;
 return (width * height);
 }
};

S. S Jain Subodh P.G. (Autonomous) College

class Triangle: public Shape{
 public:
 Triangle(int a = 0, int b = 0):Shape(a, b) { }
 int area () {
 cout << "Triangle class area :" <<endl;
 return (width * height / 2);
 }
 };
// Main function for the program
int main() {
 Shape *shape;
 Rectangle rec(10,7);
 Triangle tri(10,5);
 // store the address of Rectangle
 shape = &rec;
 // call rectangle area.
 shape->area();
 // store the address of Triangle
 shape = &tri;
 // call triangle area.
 shape->area();
 return 0;
}

S. S Jain Subodh P.G. (Autonomous) College

OUTPUT:

Parent class area
Parent class area

S. S Jain Subodh P.G. (Autonomous) College

Now we will only change in shape class like this:

class Shape {
 protected:
 int width, height;
 public:
 Shape(int a = 0, int b = 0) {
 width = a; height = b;
 }
 virtual int area() {
 cout << "Parent class area :" <<endl;
 return 0;
 }
 };

S. S Jain Subodh P.G. (Autonomous) College

After this slight modification, when the previous
example code is compiled and executed, it
produces the following result:

OUTPUT:
Rectangle class area
Triangle class area

S. S Jain Subodh P.G. (Autonomous) College

Pure virtual function
• It's possible that you'd want to include a virtual function in a base

class so that it may be redefined in a derived class to suit the objects of
that class, but that there is no meaningful definition you could give for
the function in the base class.

• We can change the virtual function area() in the base class to the
following:

class Shape {

 protected:

 int width, height;

 public:

 Shape(int a = 0, int b = 0) {

 width = a; height = b;

 }

 // pure virtual function virtual

 int area() = 0;

};

The = 0 tells the compiler that the function has no body and above

virtual function will be called pure virtual function.

19

 THANKS

