
S. S Jain Subodh P.G. (Autonomous) College
SUBJECT - Object Oriented Programming
TITLE - Oops Components

OOPs Components
-by Praveen Choudhary

components of oops
• Class.
• Objects.
• Abstraction.
• Encapsulation.
• Inheritance.
• Data Hiding.
• Polymorphism.

class
• Classes has the data and its associated function wrapped in it.

Classes are also known as a collection of similar objects or
objects of same type. In the OOPs concept the variables
declared inside a class are known as "Data Members" and the
functions are known as "Member Functions".

• Syntax:

class class-name
{
private:
variable declaration;
function declaration;
public:
variable declaration;
function declaration;
};

COMPONENTS OF CLASS
• MEMBER DATA : Member data is the

attribute of class.It may private , public or
protected.We can use these access specifier.

• MEMBER FUNCTION : Member function is
the operation performed by the class on the
member data.Member function can be
protected by using three keywords private ,
public or protected.

object
• Object is a real world entity.
• Objects sometimes correspond to things found in the real

world. For example, a graphics program may have objects
such as "circle," "square," "menu." An online shopping
system will have objects such as "shopping cart,"
"customer," and "product." The shopping system will
support behaviors such as "place order," "make payment,"
and "offer discount.“

• Syntax :
void main()

{

class_name obj_name;
}

a program to illustrate oops concept
#include<iostram.h>
#include<conio.h>
class sum
{
private :
int a , b , c;
public :
void input()

{
cout<<“enter two numbers”;
cin>>a>>b;
}

void display()
{

c = a + b;
cout<<“sum of two numbers is : ”<<c;

}
};
void main()
{

sum s;
s.input();
s.display();
getch();

}

abstraction
• Data abstraction refers to, providing only

essential information to the outside world
and hiding their background details, i.e., to
represent the needed information in program
without presenting the details.

• Data abstraction is a programming (and
design) technique that relies on the
separation of interface and implementation.

• C++ classes provides great level of data abstraction.
They provide sufficient public methods to the
outside world to play with the functionality of the
object and to manipulate object data, i.e., state
without actually knowing how class has been
implemented internally.

• For example, your program can make a call to
the sort() function without knowing what algorithm
the function actually uses to sort the given values. In
fact, the underlying implementation of the sorting
functionality could change between releases of the
library, and as long as the interface stays the same,
your function call will still work.

encapsulation
• Encapsulation is the packing of data and

functions into a single component. The
features of encapsulation are supported
using classes in most object-oriented
programming languages, although other
alternatives also exist. It allows selective
hiding of properties and methods in an
object by building an impenetrable wall to
protect the code from accidental corruption.

• In programming languages, encapsulation is used to refer
to one of two related but distinct notions, and sometimes
to the combination thereof:

* A language mechanism for restricting access to some of
the objects components.

* A language construct that facilitates the bundling of data
with the methods (or other functions) operating on that
data.

• Some programming language researchers and academics
use the first meaning alone or in combination with the
second as a distinguishing feature of object-oriented
programming, while other programming languages which
provide lexical closures view encapsulation as a feature of
the language orthogonal to object orientation.

inheritance
• One of the most important concepts in object-

oriented programming is that of inheritance.
Inheritance allows us to define a class in terms of
another class, which makes it easier to create and
maintain an application. This also provides an
opportunity to reuse the code functionality and fast
implementation time.

• When creating a class, instead of writing completely
new data members and member functions, the
programmer can designate that the new class should
inherit the members of an existing class. This
existing class is called the base class, and the new
class is referred to as the derived class.

Base & Derived Classes:

• A class can be derived from more than one
classes, which means it can inherit data and
functions from multiple base classes. To define a
derived class, we use a class derivation list to
specify the base class(es). A class derivation list
names one or more base classes and has the form:

• class derived-class: access-specifier base class.
• Where access-specifier is one of public,

protected, or private, and base-class is the name
of a previously defined class. If the access-
specifier is not used, then it is private by default.

• Consider a base class Shape and its derived class Rectangle as follows:

include <iostream>

using namespace std;

// Base class
class Shape
{

public:
void setWidth(int w)
{

width = w;
}
void setHeight(int h)
{

height = h;
}

protected:
int width;
int height;

};

// Derived class
class Rectangle: public Shape
{

public:
int getArea()
{

return (width * height);
}

};

int main(void)
{

Rectangle Rect;

Rect.setWidth(5);
Rect.setHeight(7);

// Print the area of the object.
cout << "Total area: " << Rect.getArea() << endl;

return 0;
}

data hiding
• Data hiding is a software development

technique specifically used in object-oriented
programming (OOP) to hide internal object
details (data members). Data hiding ensures
exclusive data access to class members and
protects object integrity by preventing
unintended or intended changes.

• Data hiding also reduces system complexity for
increased robustness by limiting
interdependencies between software
components.
Data hiding is also known as data
encapsulation or information hiding.

polymorphism
• Polymorphism is a greek word in which

‘poly’ means ‘many’ and ‘morph’ means
‘forms’.

• In object oriented programming,
polymorphism (from the Greek meaning
"having multiple forms") is the
characteristic of being able to assign a
different meaning or usage to something
in different contexts - specifically, to allow
an entity such as a variable, a function, or
an object to have more than one form.
There are several different kinds of
polymorphism.

a) Run time polymorphism : The appropriate
member function could be selected while
the programming is running. This is known
as run-time polymorphism. The run-
time polymorphism is implemented with
inheritance and virtual functions.

Virtual function : A function qualified by the
virtual keyword. When a virtual function is called
via a pointer, the class of the object pointed to
determines which function definition will be used.
Virtual functions implement polymorphism,
whereby objects belonging to different classes can
respond to the same message in different ways.

b) Compile time polymorphism : The compiler is able to select
the appropriate function for a particular call at compile-
time itself. This is known as compile-time
polymorphism. The compile-time polymorphism is
implemented with templates.

• Function name overloading : Using a single function
name to perform different types of tasks is known as
function overloading.

Using the concept of function overloading, design a
family of functions with one function name but with
different argument lists. The function would perform
different operations depending on the argument list in
the function call. The correct function to be invoked is
determined by checking the number and type of the
arguments but not on the function type.

• Operator overloading : The process of making an
operator to exhibit different behaviours in different
instances is known as operator overloading.

The general form of an operator function is:

return type classname: : operator(op-arglist)
{

Functionbody;
}

