
S. S Jain Subodh P.G. (Autonomous) College
 Object Oriented Programming Concept

S. S Jain Subodh P.G. (Autonomous) College
SUBJECT -

 TITLE - Inheritance

Created By:

Shalu J. Rajawat

S. S Jain Subodh P.G. (Autonomous) College

Inheritance is the process by which a class can be

derived from a base class with all features of a

base class and some of its own. This increased

code reusability.

Example:

Wheeled vehicle Boat

Car Bicycle

4-door 2-door

Vehicle

S. S Jain Subodh P.G. (Autonomous) College

C++ and inheritance

• The language mechanism by which one class

acquires the properties (data and operations) of

another class

• Base Class (or superclass): the class being

inherited from

• Derived Class (or subclass): the class that

inherits

Syntax:

class derived-class: access-specifier base-class

S. S Jain Subodh P.G. (Autonomous) College

#include <iostream.h>

// Base class

class Shape {

 public:

 void setWidth(int w)

 {

 width = w;

 }

 void setHeight(int h)

 {

 height = h;

 }

 protected:

 int width;

 int height;

};

S. S Jain Subodh P.G. (Autonomous) College

// Derived class

class Rectangle: public Shape {

 public:

 int getArea()

 {

 return (width * height);

 }

 };

 int main(void) {

 Rectangle Rect;

 Rect.setWidth(5);

 Rect.setHeight(7);

 // Print the area of the object.

 cout << "Total area: " << Rect.getArea() << endl;

 return 0;

}

S. S Jain Subodh P.G. (Autonomous) College

Advantages of inheritance

 When a class inherits from another class,
there are three benefits:

 (1) You can reuse the methods and data of
the existing class

 (2) You can extend the existing class by
adding new data and new methods

 (3) You can modify the existing class by
overloading its methods with your own
implementations

S. S Jain Subodh P.G. (Autonomous) College

Inheritance and accessibility

• A class inherits the behavior of another

class and enhances it in some way

• Inheritance does not mean inheriting

access to another class’ private members

S. S Jain Subodh P.G. (Autonomous) College

Access Control and Inheritance

 Access public protected private

Same classes Yes Yes Yes

Derived classes Yes Yes No

Outside classes Yes No No

S. S Jain Subodh P.G. (Autonomous) College

Types of base classes:

There is three types of base clsses in Inheritance of C++:

1. Public Inheritance

2. Protected Inheritance

3. Private Inheritance

Base class members working in child classes:

Note: Private members of base class can not be inherited.

Inheritance Public Members Protected Members

Public inheritance public protected

Protected inheritance protected protected

Private inheritance private private

S. S Jain Subodh P.G. (Autonomous) College

Rules for building a class hierarchy

 Derived classes are special cases of base classes

 A derived class can also serve as a base class for new
classes.

 There is no limit on the depth of inheritance allowed
in C++ (as far as it is within the limits of your
compiler)

 It is possible for a class to be a base class for more
than one derived class

S. S Jain Subodh P.G. (Autonomous) College

Types of Inheritance:

There is five types of inheritance allowed

in c++:

1. Single Inheritance

2. Multiple Inheritance

3. Hierarchical Inheritance

4. Multilevel Inheritance

5. Hybrid Inheritance

S. S Jain Subodh P.G. (Autonomous) College

Single Inheritance:

Class A

Class B

S. S Jain Subodh P.G. (Autonomous) College

Multiple Inheritance

Class A

Class C

Class B

S. S Jain Subodh P.G. (Autonomous) College

Multilevel Inheritance:

Class A

Class B

Class C

S. S Jain Subodh P.G. (Autonomous) College

Hierarchical Inheritance

Class A

Class D Class C Class B

S. S Jain Subodh P.G. (Autonomous) College

Hybrid Inheritance

Class A

Class D

Class C

Class B

S. S Jain Subodh P.G. (Autonomous) College

PROGRAM:

#include<iostream.h>

#include<conio.h>

class student

{

 protected:

 int rno,m1,m2;

 public:

 void get()

 {

 cout<<"Enter the Roll no :";

 cin>>rno;

 cout<<"Enter the two marks :";

 cin>>m1>>m2;

 }

};

S. S Jain Subodh P.G. (Autonomous) College

class sports

{

 protected:

 int sm; // sm = Sports mark

 public:

 void getsm()

 {

 cout<<"\nEnter the sports mark :";

 cin>>sm;

 }

};

S. S Jain Subodh P.G. (Autonomous) College

class statement:public student,public sports{

 int tot,avg;

 public:

 void display() {

 tot=(m1+m2+sm);

 avg=tot/3;

 cout<<"\n\n\tRoll No : "<<rno<<"\n\tTotal : "<<tot;

 cout<<"\n\tAverage : "<<avg;

 }

};

void main(){

 clrscr();

 statement obj;

 obj.get();

 obj.getsm();

 obj.display();

 getch();

}

S. S Jain Subodh P.G. (Autonomous) College

Output:

 Enter the Roll no: 100

 Enter two marks

 90

 80

 Enter the Sports Mark: 90

 Roll No: 100

 Total : 260

 Average: 86.66

S. S Jain Subodh P.G. (Autonomous) College

Constructor and Destructor in

Derived classes:

In Inheritance, Destructors are executed in reverse

order of constructor execution. The destructor are

executed when an object goes out of scope.

To know the execution of constructor and

Destructors:

A Program to show sequence of execution of

constructor and destructor in multiple Inheritance:

S. S Jain Subodh P.G. (Autonomous) College

class Base {

 public: Base () {

 cout << "Inside Base constructor" << endl;

 }

 ~Base () {

 cout << "Inside Base destructor" << endl;

 }

};

 class Derived : public Base {

 public: Derived () {

 cout << "Inside Derived constructor"<< endl;

 }

 ~Derived () {

 cout << "Inside Derived destructor" << endl;

 }

};

 void main() {

 Derived x;

}

S. S Jain Subodh P.G. (Autonomous) College

OUTPUT:

Inside Base constructor

Inside Derived constructor

Inside Derived destructor

Inside Base destructor

S. S Jain Subodh P.G. (Autonomous) College

 THANKS

