
Ash Sorting: Easy & Less Time

Consuming Sorting Algorithm

Dr. Leena Bhatia

S. S Jain Subodh P.G. (Autonomous) College
SUBJECT - Sorting

TITLE - Ash Sorting

Concept….

• Ash Sorting algorithm is comparison based less time consuming

simple algorithm.

• Ash sorting is based on the very simple real life smoke concept that

is when we burn the coal the smoke which is lighter, fly in the

air and the heaviest ash remains at the ground.

S. S Jain Subodh P.G. (Autonomous) College

Concept…

• In ash sorting we start from first element and compare it with

next element (i.e., 2nd element) as well as with last element.

• Then we put least value at first position, mid value at 2nd

position and highest value at the last position.

S. S Jain Subodh P.G. (Autonomous) College

18 18

33 21

3 3

23 23

2 2

21 33

Now, the 1st element will be compared with

next element (i.e., 3rd). After comparison there

might be three basic options:

Case I: 1st element >3rd element

Case II: 3rd element >1st element

Case III: both are equal

Lets consider an example:

• Take an array of 6 elements

• Compare 1st, 2nd and 6th elements and put

18 at 1st position, 21 at 2nd and 33 at last

position

S. S Jain Subodh P.G. (Autonomous) College

• In Case I, if 1st element >3rd element, there is no need to compare the 3rd

element with last element (as last element is already greater to 1st

element) and just swapping of 1st element with 3rd element is required.

• But in Case II, 3rd element must also be compare with last element) as it

could be greater than last element). If the 3rd element is also greater than

the last element then we have to swap the values of 3rd element and last

element.

• In the last case i.e., Case III no swapping or further comparison is

required.

S. S Jain Subodh P.G. (Autonomous) College

• Now the 1st element will be

compared with 3rd, 4th and

5th one by one in the

manner explained earlier.

• After I pass, least and highest

elements will be placed at

correct positions

18 3

21 21

3 18

23 23

2 2

33 33

3 2

21 21

18 18

23 23

2 3

33 33

S. S Jain Subodh P.G. (Autonomous) College

• II pass: At the start of II pass, the same

procedure will be followed with 2nd, 3rd

and second last element i.e., 5th in the

present example (Fig: f) and the values

are 21, 18 and 3.

• After the first comparison, 2nd position

will be occupied by 3, 3rd position will

be occupied by 18 and 21 will be

stored at 5th position.

2 2

21 3

18 18

23 23

3 21

33 33

(f) (g)

S. S Jain Subodh P.G. (Autonomous) College

• Next comparison would be among 2nd,

4th and 5th elements (Fig: g). As 3 (2nd

element) is less than 23 (4th element)

that’s why 23 will also be compared

with 5th element i.e, 21 (Case II). And

swapping would be performed between

4th and 5th elements.

II pass is now completed and after this 2nd

least and 2nd highest elements will be

placed at correct positions (Fig: h).

2 2

3 3

18 18

23 21

21 23

33 33

(g) (h)

S. S Jain Subodh P.G. (Autonomous) College

• III pass: in the third pass only 3rd

and 4th elements would be

compared (Fig: i) and positioned

at correct places.

• After III pass all the elements

get sorted and placed at right

positions (Fig j).

2 2

3 3

18 18

21 21

23 23

33 33

(i) (j)

S. S Jain Subodh P.G. (Autonomous) College

Procedure Ash (Array arr, Number initial_index, Number lst)
Begin

For i= initial_index to lst/2

Begin

Flag=0

For j=initial_index+1 to lst-1

Begin

If flag=0 then

Sort (arr[i],arr[j], arr[lst])

flag=1

else

if arr[i]>arr[j] then Rem Case I

tmp=arr[i]

arr[i]=arr[j]

arr[j]=tmp

else

if arr[j]>arr[lst] then Rem: Case II

tmp=arr[j]

arr[j]=arr[lst]

arr[lst]=tmp

end if

end if

end if

end loop

lst=lst-1

end loop

end procedure

S. S Jain Subodh P.G. (Autonomous) College

No of elements in array

Mean Time Taken in

Sorting
1000 10000 20000 30000

Linear Sort (in Seconds) 0.025 0.72 2.9 6.43

Ash Sort (in Seconds) 0 0.28 0.99 2.27

Real Time Comparison between Linear Sort and

Ash Sort

S. S Jain Subodh P.G. (Autonomous) College

Comparing Time Taking By Sorting Techniques

0

1

2

3

4

5

6

7

1000 10000 20000 30000

Number of Array Elements

T
im

e
 T

a
k
e
n

 (
In

 S
e
c
o

n
d

s
)

Linear Sort (in

Seconds)

Ash Sort (in

Seconds)

Graph 1: Comparing Time Taken By Sorting Techniques

S. S Jain Subodh P.G. (Autonomous) College

Conclusion…

• Though Ash sorting is based on comparison but it needs less

number of comparisons as compare to linear sort.

• Ash sorting is found 2 to 3 times faster as compared to linear

sort.

S. S Jain Subodh P.G. (Autonomous) College

Thank You All

S. S Jain Subodh P.G. (Autonomous) College

